Внутренняя норма доходности

Перед выбором любого инвестиционного проекта рассчитывается Internal Rate of Return –IRR внутренняя норма доходности. При этом вычисляется размер чистого приведённого дохода при разных ставках дисконта, что можно делать как вручную, так и с помощью автоматизированных методов. Благодаря этому показателю можно определить прибыльность возможной инвестиции и оптимальный размер кредитной ставки. Однако у данного метода есть и свои недостатки. Что такое IRR на практике и как рассчитать показатель с применением формулы расчёта, будет показано ниже.

Определение IRR и экономический смысл

Internal Rate of Return или IRR в русском варианте определяется как внутренняя норма доходности (ВНД), или другими словами – внутренняя норма прибыли, которую ещё нередко называют внутренней нормой рентабельности.

Такой внутренней нормой доходности является ставка процента, при которой дисконтированная стоимость всех денежных потоков проекта (NPV) будет равной нулю. При подобных условиях обеспечивается отсутствие убытков, то есть доходы от инвестиций тождественны затратам на проект.

Экономический смысл вычисления в том, чтобы:

  1. Охарактеризовать прибыльность потенциального вложения. Чем выше значение нормы доходности IRR, тем выше показатель рентабельности проекта, и, соответственно, при выборе из двух возможных вариантов инвестиций, при прочих равных, выбирают тот, где расчёт IRR показал более высокую ставку.
  2. Определить оптимальную ставку кредита. Поскольку расчёт ВНД показывает максимальную цену, при которой инвестиции останутся безубыточными, с ним можно соотнести с показателем ставку кредита, который компания может взять для инвестиций. Если процент по запланированному кредиту больше полученного значения ВНД, то проект будет убыточным. И наоборот – если ставка кредита ниже ставки инвестирования (ВНД), то заёмные денежные средства принесут добавочную стоимость.

Например, если взять кредит, по которому нужно выплачивать 15% годовых и вложить в проект, который принесёт 20% годовых, то инвестор на проекте зарабатывает. Если в оценках прибыльности проекта будет допущена ошибка и IRR окажется меньше 15%, то банку нужно будет отдать больше, чем принесёт проектная деятельность. Точно так же поступает и сам банк, привлекая деньги от населения и выдавая кредиторам под больший процент. Таким образом, рассчитав IRR, можно легко и просто узнать допустимый верхний уровень – предел стоимости заёмного капитала.

Фактически эти возможности являются одновременно и преимуществами, которые даёт инвестору вычисление ВНД. Инвестор может сравнить перспективные проекты между собой с точки зрения эффективности использования капитала. Кроме того, преимущество применения ВНД ещё и в том, что это позволяет сравнивать проекты с разным периодом вложений – горизонтов инвестирования. ВНД выявляет тот проект, который может приносить большие доходы в долгосрочной перспективе.

Однако особенности ВНД в том, что и полученный показатель не позволяет оценить инвестиционный проект исчерпывающе.

  1. С помощью результатов вычисления нельзя предсказать размер следующего поступления по вкладу, поскольку размер прибыли зависит от множества микро- и макроэкономических причин.
  2. Показатель не отражает уровень (размер) реинвестирования, что исправлено в MIRR-формуле – формуле модифицированной внутренней нормы рентабельности, которая скорректирована с учётом норм реинвестиций. Обычно это формула применяется в проектах с очень низкой или очень высокой нормой прибыли, когда необходимость реинвестировать новые денежные средства может исказить реальную отдачу от проекта.
  3. Показатель не демонстрирует абсолютный размер полученных от инвестиций денежных средств. ВНД – это относительный показатель, который может отразить процент, гарантирующий безубыточность вложений.

Чтобы оценить инвестиционную привлекательность (в том числе – в сравнении с другими проектами), IRR сравнивается, например, с требуемым размером доходности капитала (эффективной ставкой дисконтирования). За такую сравнительную величину практики часто берут средневзвешенную стоимость капитала (WACC). Но, вместо WACC может быть взята и другая норма доходности – например, ставка по депозиту банка. Если после проведения расчётов окажется, что по банковскому депозиту процентная ставка составляет, например, 15%, а IRR потенциального проекта – 20%, то целесообразнее деньги вкладывать в проект, а не размещать на депозите.

Формула внутренней нормы доходности

Для определения показателя IRR, опираются на уравнение для чистой приведённой рентабельности:

Исходя из этого, для внутренней нормы доходности формула будет выглядеть следующим образом:

Здесь r – процентная ставка.

Эта же IRR-формула в общем виде будет выглядеть таким образом.

Здесь CF t – денежные потоки в момент времени, а n – число периодов времени. Важно отметить, что показатель IRR (в отличие от NPV) применим только к процессам с характеристиками инвестиционного проекта – то есть, для случаев, когда один денежный поток (чаще всего – первый – первоначальная инвестиция) является отрицательным.

Примеры расчёта IRR

С необходимостью расчёта показателя IRR сталкиваются не только профессиональные инвесторы, но и практически любой человек, который хочет выгодно разместить накопленные средства.

Пример расчёта IRR при бизнес-инвестировании

Приведём пример использования метода расчёта внутренней нормы прибыли при условии постоянной барьерной ставки.

Характеристики проекта:

  • Размер планируемой инвестиции — 114500$.
  • Доходы от инвестирования:
  • на первом году: 30000$;
  • на втором году: 42000$;
  • на третьем году: 43000$;
  • на четвёртом году: 39500$.
  • Размер сравниваемой эффективной барьерной ставки – на уровне 9,2%.

В данном примере расчёта используется метод последовательного приближения. «Виды» барьерных ставок подбираются так, чтобы получились минимальные NPV-значения по модулю. Затем проводится аппроксимация.

Как посчитать IRR для барьерной ставки r(a) = 10,0%?

Пересчитаем денежные потоки в виде текущих стоимостей:

  • PV1 = 30000 / (1 + 0,1) = 27272,73$
  • PV2 = 42000 / (1 + 0,1)2 = 34710,74$
  • PV3 = 43000 / (1 + 0,1)3 = 32306,54$
  • PV4 = 39500 / (1 + 0,1)4 = 26979,03$

NPV(10,0%) = (27272,73 + 34710,74 + 32306,54 + 26979,03) — 114500 = 6769,04$

Прежде, чем считать IRR для барьерной ставки r(b) = 15,0%, вновь произведём пересчёт денежные потоки в виде текущих стоимостей:

  • PV1 = 30000 / (1 + 0,15)1 = 22684,31$
  • PV2 = 42000 / (1 + 0,15)2 = 31758,03$
  • PV3 = 43000 / (1 + 0,15)3 = 28273,20$
  • PV4 = 39500 / (1 + 0,15)4 = 22584,25$

NPV(15,0%) = (22684,31 + 31758,03 + 28273,20 + 22584,25) — 114500 = -9200,21$

Предполагая, что на отрезке а-б NPV(r)-функция прямолинейна, используем уравнение для аппроксимации на этом участке прямой:

IRR-расчёт:

IRR = ra + (rb — ra) * NPVa /(NPVa — NPVb) = 10 + (15 — 10)* 6769,04/ (6769,04 – (-9200,21)) = 12,12%

Поскольку должна быть сохранена определённая зависимость, проверяем результат по ней. Формула расчёта считается справедливой, если соблюдены следующие условия: NPV(a) > 0 > NPV(b) и r(a) < IRR < r(b).

Рассчитанная величина IRR показывает, что внутренний коэффициент окупаемости равняется 12,12%, а это превышает 9,2% (эффективную барьерную ставку), а, значит, и проект может быть принят.

Для устранения проблемы множественного определения IRR и избегания (при знакопеременных денежных потоках) неправильного расчёта чаще всего строится график NPV(r).

Пример такого графика представлен выше для двух условных проектов А и Б с разными ставками процента. Значение IRR для каждого из них определяется местом пересечения с осью Х, поскольку этот уровень соответствует NPV=0. Так в примере видно, что для проекта А место пересечения со шкалой будет в точке с отметкой 14,5 (IRR=14,5%), а для проекта Б место пересечения – точка с отметкой 11,8 (IRR=11,8%).

Сравнительный пример частного инвестирования

Ещё одним примером необходимости определения IRR может служить иллюстрация из жизни обычного человека, который не планирует запускать какой-либо бизнес-проект, а просто хочет максимально выгодно использовать накопленные средства.

Допустим, наличие 6 млн. рублей требует либо отнести их в банк под процент, либо, приобрести квартиру, чтобы сдавать её 3 года в аренду, после чего продать, вернув основной капитал. Здесь отдельно будет рассчитываться IRR для каждого решения.

  1. В случае с банковским вкладом есть возможность разместить средства на 3 года под 9% годовых. На предлагаемых банком условиях, можно в конце года снимать 540 тыс. рублей, а через 3 года – забрать все 6 млн. и проценты за последний год. Поскольку вклад – это тоже инвестиционный проект, для него рассчитывается внутренняя норма рентабельности. Здесь она будет совпадать с предлагаемым банком процентом – 9%. Если стартовые 6 млн. рублей уже есть в наличии (то есть, их не нужно одалживать и платить процент за использование денег), то такие инвестиции будут выгодны при любой ставке депозита.
  2. В случае с покупкой квартиры, сдачей её в аренду и продажей ситуация схожая – тоже в начале вкладываются средства, затем забирается доход и, путём продажи квартиры, возвращается капитал. Если стоимость квартиры и аренды не меняются, то арендная плата из расчёта 40 тыс. в месяц за год будет равняться 480 тыс. рублей. Расчёт показателя IRR для проекта «Квартира» покажет 8% годовых (при условии бесперебойной сдачи квартиры в течение всего инвестиционного срока и возврата капитала в размере 6 млн.

    IRR — внутренняя норма доходности

    рублей).

Из этого следует вывод, что, в случае неизменности всех условий, даже при наличии собственного (а не заёмного) капитала ставка IRR будет выше в первом проекте «Банк» и этот проект будет считаться более предпочтительным для инвестора.

При этом ставка IRR во втором случае останется на уровне 8% годовых, независимо от того, сколько лет квартира будет сдаваться в аренду.

Однако если инфляция повлияет на стоимость квартиры, и она ежегодно последовательно будет увеличиваться на 10%, 9% и 8% соответственно, то к концу расчётного периода квартиру можно будет продать уже за 7 млн. 769 тыс. 520 рублей. На третий год проекта такое увеличение денежного потока продемонстрирует IRR в размере 14,53%. В этом случае проект «Квартира» будет более рентабельным, чем проект «Банк», но только при условии наличия собственного капитала. Если же для обретения стартовой суммы нужно будет обратиться в другой условный банк за займом, то с учётом минимальной ставки рефинансирования в размере 17%, проект «Квартира» окажется убыточным.

Расчет IRR в Excel с помощью функций и графика

IRR (Internal Rate of Return), или ВНД – показатель внутренней нормы доходности инвестиционного проекта. Часто применяется для сопоставления различных предложений по перспективе роста и доходности. Чем выше IRR, тем большие перспективы роста у данного проекта. Рассчитаем процентную ставку ВНД в Excel.

Экономический смысл показателя

Другие наименования: внутренняя норма рентабельности (прибыли, дисконта), внутренний коэффициент окупаемости (эффективности), внутренняя норма.

Коэффициент IRR показывает минимальный уровень доходности инвестиционного проекта. По-другому: это процентная ставка, при которой чистый дисконтированный доход равен нулю.

Формула для расчета показателя вручную:

, где

  • CFt – денежный поток за определенный промежуток времени t;
  • IC – вложения в проект на этапе вступления (запуска);
  • t – временной период.

На практике нередко коэффициент IRR сравнивают со средневзвешенной стоимостью капитала:

  1. ВНД выше – следует внимательно рассмотреть данный проект.
  2. ВНД ниже – нецелесообразно вкладывать средства в развитие проекта.
  3. Показатели равны – минимально допустимый уровень (предприятие нуждается в корректировке движения денежных средств).

Часто IRR сравнивают в процентами по банковскому депозиту.

Если проценты по вкладу выше, то лучше поискать другой инвестиционный проект.



Пример расчета IRR в Excel

Быстро рассчитать IRR можно с помощью встроенной функции ВСД. Синтаксис:

  • диапазон значений – ссылка на ячейки с числовыми аргументами, для которых нужно посчитать внутреннюю ставку доходности (хотя бы один денежный поток должен иметь отрицательное значение);
  • предположение – величина, которая предположительно близка к значению ВСД (аргумент необязательный; но если функция выдает ошибку, аргумент нужно задать).

Возьмем условные цифры:

Первоначальные затраты составили 150 000, поэтому это числовое значение вошло в таблицу со знаком «минус». Теперь найдем IRR. Формула расчета в Excel:

Расчеты показали, что внутренняя норма доходности инвестиционного проекта составляет 11%. Для дальнейшего анализа значение сравнивается с процентной ставкой банковского вклада, или стоимостью капитала данного проекта, или ВНД другого инвестиционного проекта.

Мы рассчитали ВНД для регулярных поступлений денежных средств. При несистематических поступлениях использовать функцию ВСД невозможно, т.к. ставка дисконтирования для каждого денежного потока будет меняться.

IRR инвестиционного проекта: формулы и примеры расчета

Решим задачу с помощью функции ЧИСТВНДОХ.

Модифицируем таблицу с исходными данными для примера:

Обязательные аргументы функции ЧИСТВНДОХ:

  • значения – денежные потоки;
  • даты – массив дат в соответствующем формате.

Формула расчета IRR для несистематических платежей:

Существенный недостаток двух предыдущих функций – нереалистичное предположение о ставке реинвестирования. Для корректного учета предположения о реинвестировании рекомендуется использовать функцию МВСД.

Аргументы:

  • значения – платежи;
  • ставка финансирования – проценты, выплачиваемые за средства в обороте;
  • ставка реинвестирования.

Предположим, что норма дисконта – 10%. Имеется возможность реинвестирования получаемых доходов по ставке 7% годовых. Рассчитаем модифицированную внутреннюю норму доходности:

Полученная норма прибыли в три раза меньше предыдущего результата. И ниже ставки финансирования. Поэтому прибыльность данного проекта сомнительна.

Графический метод расчета IRR в Excel

Значение IRR можно найти графическим способом, построив график зависимости чистой приведенной стоимости (NPV) от ставки дисконтирования. NPV – один из методов оценки инвестиционного проекта, который основывается на методологии дисконтирования денежных потоков.

Для примера возьмем проект со следующей структурой денежных потоков:

Для расчета NPV в Excel можно использовать функцию ЧПС:

Так как первый денежный поток происходил в нулевом периоде, то в массив значений он не должен войти. Первоначальную инвестицию нужно прибавить к значению, рассчитанному функцией ЧПС.

Функция дисконтировала денежные потоки 1-4 периодов по ставке 10% (0,10). При анализе нового инвестиционного проекта точно определить ставку дисконтирования и все денежные потоки невозможно. Имеет смысл посмотреть зависимость NPV от этих показателей. В частности, от стоимости капитала (ставки дисконта).

Рассчитаем NPV для разных ставок дисконтирования:

Посмотрим результаты на графике:

Напомним, что IRR – это ставка дисконтирования, при которой NPV анализируемого проекта равняется нулю. Следовательно, точка пересечения графика NPV с осью абсцисс и есть внутренняя доходность предприятия.

Внутренняя норма доходности — IRR

Определение

Внутренняя норма доходности (англ. Internal Rate of Return, IRR), известная также как внутренняя ставка доходности, является ставкой дисконтирования, при которой чистая приведенная стоимость (англ. Net Present Value, NPV) проекта равна нолю. Другими словами, настоящая стоимость всех ожидаемых денежных потоков проекта равна величине первоначальных инвестиций. В основе метода IRR лежит методика дисконтированных денежных потоков, а сам показатель получил широкое использование в бюджетировании капитальных вложений и при принятии инвестиционных решений в качестве критерия отбора проектов и инвестиций.

Формула IRR

Чтобы рассчитать внутреннюю норму доходности проекта необходимо решить следующее уравнение, приравняв NPV проекта к нолю.

Критерий отбора проектов

Правило принятия решений при отборе проектов можно сформулировать следующим образом:

  1. Внутренняя норма доходности должна превышать средневзвешенную стоимость капитала (англ. Weighted Average Cost of Capital, WACC), привлеченного для реализации проекта, в противном случае его следует отклонить.
  2. Если несколько независимых проектов соответствуют указанному выше критерию, все они должны быть приняты. Если они являются взаимоисключающими, то принять следует тот из них, у которого наблюдается максимальный IRR.

Пример расчета внутренней нормы доходности

Предположим, что существует два проекта с одинаковым уровнем риска, первоначальными инвестициями и общей суммой ожидаемых денежных потоков. Для более наглядной иллюстрации концепции стоимости денег во времени, поступление денежных потоков по Проекту А ожидается несколько раньше, чем по Проекту Б.

Подставим представленные в таблице данные в уравнение.

Для решения этих уравнений можно воспользоваться функцией «ВСД» Microsoft Excel, как это показано на рисунке ниже.

  1. Выберите ячейку вывода I4.
  2. Нажмите кнопку fx, выберите категорию «Финансовые», а затем функцию «ВСД» из списка.
  3. В поле «Значение» выберите диапазон данных C4:H4, оставьте пустым поле «Предположение» и нажмите кнопку OK.

Таким образом, внутренняя ставка доходности Проекта А составляет 20,27%, а Проекта Б 12,01%. Схема дисконтированных денежных потоков представлена на рисунке ниже.

Предположим, что средневзвешенная стоимость капитала для обеих проектов составляет 9,5% (поскольку они обладают одним уровнем риска). Если они являются независимыми, то их следует принять, поскольку IRR выше WACC. Если бы они являлись взаимоисключающими, то принять следует Проект А из-за более высокого значения IRR.

Преимущества и недостатки метода IRR

Использование метода внутренней нормы доходности имеет три существенных недостатка.

  1. Предположение, что все положительные чистые денежные потоки будут реинвестированы по ставке IRR проекта. В действительности такой сценарий маловероятен, особенно для проектов с ее высокими значениями.
  2. Если хотя бы одно из значений ожидаемых чистых денежных потоков будет отрицательным, приведенное выше уравнение может иметь несколько корней. Эта ситуация известна как проблема множественности IRR.
  3. Конфликт между методами NPV и IRR может возникнуть при оценке взаимоисключающих проектов.

    Внутренняя норма доходности (IRR). Формула и пример расчета в Excel

    В этом случае у одного проекта будет более высокая чистая приведенная стоимость, но более низкая внутренняя норма доходности, а у другого наоборот. В такой ситуации следует отдавать предпочтение проекту с более высокой чистой приведенной стоимостью.

Рассмотрим конфликт NPV и IRR на следующем примере.

Для каждого проекта была рассчитана чистая приведенная стоимость для диапазона ставок дисконтирования от 1% до 30%. На основании полученных значений NPV построен следующий график.

При стоимости капитала от 1% до 13,092% реализация Проекта А является более предпочтительной, поскольку его чистая приведенная стоимость выше, чем у Проекта Б. Стоимость капитала 13,092% является точкой безразличия, поскольку оба проекта обладают одинаковой чистой приведенной стоимостью. При стоимости капитала более 13,092% предпочтительной уже является реализация Проекта Б.

С точки зрения IRR, как единственного критерия отбора, Проект Б является более предпочтительным. Однако, как можно убедиться на графике, такой вывод является ложным при стоимости капитала менее 13,092%. Таким образом, внутреннюю норму доходности целесообразно использовать в качестве дополнительного критерия отбора при оценке нескольких взаимоисключающих проектов.

Вернуться на методику инвестиционный анализ

Внутренняя норма доходности IRR

Внутренняя норма доходности — норма прибыли, порожденная инвестицией. Это та норма прибыли (барьерная ставка, ставка дисконтирования), при которой чистая текущая стоимость инвестиции равна нулю, или это та ставка дисконта, при которой дисконтированные доходы от проекта равны инвестиционным затратам. Внутренняя норма доходности определяет максимально приемлемую ставку дисконта, при которой можно инвестировать средства без каких-либо потерь для собственника.

IRR = r, при котором NPV = f(r) = 0,

Ее значение находят из следующего уравнения:

NPV(IRR) — чистая текущая стоимость, рассчитанная по ставке IRR,
CFt — приток денежных средств в период t;
It — сумма инвестиций (затраты) в t-ом периоде;
n — суммарное число периодов (интервалов, шагов) t = 0, 1, 2, …, n.

Определяется: как норма прибыли, при которой чистая текущая стоимость инвестиции равна нулю.

Характеризует: наименее точно, эффективность инвестиции, в относительных значениях.

Синонимы: внутренняя норма прибыли, внутренний коэффициент окупаемости, Internal Rate of Return.

Акроним:IRR

Недостатки: не учитывается уровень реинвестиций, не показывает результат инвестиции в абсолютном значении, при знакопеременных потоках может быть рассчитан неправильно.

Критерий приемлемости: IRR > R бар ef (чем больше, тем лучше)

Условия сравнения: любой срок действия инвестиции и размер.

Экономический смысл данного показателя заключается в том, что он показывает ожидаемую норму доходности (рентабельность инвестиций) или максимально допустимый уровень инвестиционных затрат в оцениваемый проект. IRR должен быть выше средневзвешенной цены инвестиционных ресурсов:

IRR > Rбар eff (CC)

Если это условие выдерживается, инвестор может принять проект, в противном случае он должен быть отклонен.

Достоинства показателя внутренняя норма доходности (IRR) состоят в том, что кроме определения уровня рентабельности инвестиции, есть возможность сравнить проекты разного масштаба и различной длительности.

Показатель эффективности инвестиций внутренняя норма доходности (IRR) имеет три основных недостатка.

Во-первых, по умолчанию предполагается, что положительные денежные потоки реинвестируются по ставке, равной внутренней норме доходности.

Внутренняя норма доходности

В случае, если IRR близко к уровню реинвестиций фирмы, то этой проблемы не возникает; когда IRR, особенно привлекательного инвестиционного проекта равен, к примеру 80%, то имеется в виду, что все денежные поступления должны реинвестироваться при ставке 80%. Однако маловероятно, что предприятие обладает ежегодными инвестиционными возможностями, которые обеспечивают рентабельность в 80%. В данной ситуации показатель внутренней нормы доходности (IRR) завышает эффект от инвестиций (в показателе MIRR модифицированная внутренняя норма доходности данная проблема устранена).

Во-вторых, нет возможности определить, сколько принесет денег инвестиция в абсолютных значениях (рублях, долларах).

В-третьих, в ситуации со знакопеременными денежными потоками может рассчитываться несколько значений IRR или возможно определение неправильного значения (в программе "Альтаир Инвестиционный анализ 1.хх" эта проблема устранена программным способом, будет и в "Альтаир Инвестиционный анализ 2.01).

Пример №1. Расчет внутренней нормы доходности при постоянной барьерной ставке.
Размер инвестиции — 115000$.
Доходы от инвестиций в первом году: 32000$;
      во втором году: 41000$;
      в третьем году: 43750$;
      в четвертом году: 38250$.
Размер эффективной барьерной ставки — 9,2%.

Решим задачу без использования специальных программ. Используем метод последовательного приближения. Подбираем барьерные ставки так, чтобы найти минимальные значения NPV по модулю, и затем проводим аппроксимацию. Стандартный метод — не устраняется проблема множественного определения IRR и существует возможность неправильного расчета (при знакопеременных денежных потоках). Для устранения проблемы обычно строится график NPV(r)).

Рассчитаем для барьерной ставки равной ra=10,0%
Пересчитаем денежные потоки в вид текущих стоимостей:
PV1 = 32000 / (1 + 0,1) = 29090,91$
PV2 = 41000 / (1 + 0,1)2 = 33884,30$
PV3 = 43750 / (1 + 0,1)3 = 32870,02$
PV4 = 38250 / (1 + 0,1)4 = 26125,27$

NPV(10,0%) = (29090,91 + 33884,30 + 32870,02 + 26125,27) — 115000 =
        = 121970,49 — 115000 = 6970,49$

Рассчитаем для барьерной ставки равной rb=15,0%
Пересчитаем денежные потоки в вид текущих стоимостей:
PV1 = 32000 / (1 + 0,15)1 = 27826,09$
PV2 = 41000 / (1 + 0,15)2 = 31001,89$
PV3 = 43750 / (1 + 0,15)3 = 28766,34$
PV4 = 38250 / (1 + 0,15)4 = 21869,56$

NPV(15,0%) = (27826,09 + 31001,89 + 28766,34 + 21869,56) — 115000 = 109463,88 — 115000 = — 5536,11$

Делаем предположение, что на участке от точки а до точки б функция NPV(r) прямолинейна, и используем формулу для аппроксимации на участке прямой:

IRR = ra + (rb — ra) * NPVa /(NPVa — NPVb) = 10 + (15 — 10)*6970,49 / (6970,49 — (- 5536,11)) = 12,7867%

Формула справедлива, если выполняются условия ra < IRR < rb и NPVa > 0 > NPVb.

Ответ: внутренний коэффициент окупаемости равен 12,7867%, что превышает эффективную барьерную ставку 9,2%, следовательно, проект принимается.

Пример №2. IRR при переменной барьерной ставке.
Размер инвестиции — $12800.
Доходы от инвестиций в первом году: $7360;
во втором году: $5185;
в третьем году: $6270.
Размер барьерной ставки — 11,4% в первом году;
10,7% во втором году;
9,5% в третьем году.
Определите приемлемость проекта по параметру IRR.

Рассчитаем для ставки дисконтирования равной ra=20,0%
Пересчитаем денежные потоки в вид текущих стоимостей:
PV1 = 7360 / (1 + 0,2) = $6133,33
PV2 = 5185 / (1 + 0,2)^2 = $3600,69
PV3 = 6270 / (1 + 0,2)^3 = $3628,47

NPV(20,0%) = (6133,33 + 3600,69 + 3628,47) — 12800 = 13362,49 — 12800 = $562,49

Рассчитаем для ставки дисконтирования равной rb = 25,0%

Пересчитаем денежные потоки в вид текущих стоимостей:
PV1 = 7360 / (1 + 0,25) = $5888,00
PV2 = 5185 / (1 + 0,25)^2 = $3318,40
PV3 = 6270 / (1 + 0,25)^3 = $3210,24

NPV(25,0%) = (5888,00 + 3318,40 + 3210,24) — 12800 = 12416,64 — 12800 = -383,36

IRR = 20 + (25 — 20)*562,49 / (562,49 — (- 383,36)) = 22,9734%.

Т.к. барьерная ставка переменная, то сравнение производим с эффективной барьерной ставкой.
В соответствии с расчетом примера эффективная барьерная ставка равна 10,895%.

Ответ: внутренний коэффициент окупаемости равен 22,9734%, превышает 10,895%, следовательно, проект принимается.

Правило, согласно которому, из двух проектов, выбирается проект с большим IRR действует не всегда. После учета уровня реинвестиций (пример №3) или барьерной ставки (пример №4) проект с меньшим IRR, может быть выгоднее проекта с большим IRR.

Пример №3. Исключение из правила: выбор проекта с большим значением IRR, влияние уровня реинвестиций барьерной ставки.
Стоимость инвестиции для обоих проектов равна 100 рублям.
Барьерная ставка равна 12%.
Уровень реинвестиций постоянный и равен 10%.
Первый проект генерирует прибыль равную 200 рублей по окончании 1 года и 100 рублей по окончании второго года, а второй генерирует прибыль равную 160 рублей в течении первых 3 лет и затем по 60 рублей еще 4 года.
Сравните два проекта.

Рассчитаем значения параметров IRR и MIRR для каждого из проектов:
IRR1 = 141,42%.
IRR2 = 153,79%.
MIRR1 = 73,205%.
MIRR2 = 40,0%.
Но при этом годовая доходность, рассчитанная по модели MIRR будет у первого проекта равна 73,205%., а у второго всего лишь 40,0%, несмотря на больший IRR. Т.к. расчет по модели MIRR точнее чем IRR то примут первый инвестиционный проект (если рассматривать только с точки зрения финансовой эффективности).

Пример №4. Исключение из правила: выбор проекта с большим значением IRR, влияние барьерной ставки.
Стоимость инвестиции для обоих проектов равна 100 рублям.
Барьерная ставка равна 25%.
Первый проект генерирует прибыль равную 160 рублей по окончании 1 года, а второй генерирует прибыль равную 80 рублей в течении 7 лет.
Сравните два проекта.

IRR1 = 60,0%.
IRR2 = 78,63%.
Т.к. срок действия инвестиционных проектов существенно различается, то сравнивать по параметру DPI не представляется возможным; сравниваем по MIRR(бар) и с NRR в годовых значениях.
MIRR(бар)1 = 60,0%
MIRR(бар)2 = 42,71%
Чистая доходность NRR1, годовых = 28%.
Чистая доходность NRR2, годовых = 21,84%.

Показатели MIRR(бар) и NRR, % годовых больше у первого проекта, несмотря на меньший IRR.

Пример №5. Анализ чувствительности.
Размер инвестиции — $12800.
Доходы от инвестиций в первом году: $7360;
во втором году: $5185;
в третьем году: $6270.
Определите, как повлияет на значение внутренней нормы доходности увеличение прибыли от инвестиции на 23,6%.

Исходная внутренняя норма доходности была рассчитана в примере №2 и равна IRRисх = 22,97%.
Определим значение денежных потоков с учетом увеличения их на 23,6%.
CF1 ач = 7360 * (1 + 0,236) = $9096,96
CF2 ач = 5185 * (1 + 0,236) = $6408,66
CF3 ач = 6270 * (1 + 0,236) = $7749,72

Рассчитаем для ставки дисконтирования равной ra = 30,0%
Пересчитаем денежные потоки в вид текущих стоимостей:
PV1 ач = 9096,96 / (1 + 0,3)1 = $6997,661
PV2 ач = 6408,66 / (1 + 0,3)2 = $3792,106
PV3 ач = 7749,72 / (1 + 0,3)3 = $3527,410
NPVач(30,0%) = (6997,661 + 3792,106 + 3527,410) — 12800 = 13 593,118 — 12800 = $793,1180

Рассчитаем для ставки дисконтирования равной rb = 40,0%
Пересчитаем денежные потоки в вид текущих стоимостей:
PV1 ач = 9096,96 / (1 + 0,4)1 = $6497,828
PV2 ач = 6408,66 / (1 + 0,4)2 = $3269,724
PV3 ач = 7749,72 / (1 + 0,4)3 = $2824,242
NPVач(40,0%) = (6497,828 + 3269,724 + 2824,242) — 12800 = 12 591,794 — 12800 = — $208,206

IRRач = 30 + (40 — 30) * 793,118 / (793,118 — (- 208,206)) = 37,92%.

Определим изменение внутренней нормы доходности: (IRRач — IRRисх) / IRRисх * 100% = (37,92 — 23,6)/23,6*100% = 60,68%.

Ответ. Увеличение размера доходов на 23,6% привело к увеличению внутренней нормы доходности на 60,68%.

Примечание. Дисконтирование денежных потоков при меняющейся во времени барьерной ставке (норме дисконта) соответствует "Методическим указаниям № ВК 477 …" п.6.11 (стр. 140).

 

Внутренняя норма рентабельности (IRR)

Внутренняя норма рентабельности (Internal Rate of Return, IRR) — это ставка дисконтирования, при которой Чистый дисконтированный доход(NPV) равен нулю (т.е. суммарные доходы равны суммарным инвестициям).

Расчет внутренней нормы доходности

Другими словами это показатель отражает безубыточную норму рентабельности проекта.

Пример графического расчета показателя IRR

3. График изменения уровня доходности в зависимости от ставки дисконтирования

На основе рассчитанных значений NPV при ставке дисконтировании 12 % и 18 % годовых, строится график. Особенно точным будет результат, если график строить на основе данных с положительными и отрицательными значениями.

Пример математического расчета показателя IRR

Пусть наш проект рассчитан на 1 год. Первоначальные инвестиции = 100 тыс. руб. Чистый доход за год = 120 тыс. руб. Рассчитаем IRR.

120/(1+IRR)1 – 100 = 0

120/(1+IRR)1 = 100 {умножим обе части уравнения на (1+IRR)1}

120 = 100 (1+IRR)1

120 = 100 + 100IRR

20 = 100IRR

IRR = 20/100 = 0,2 или 20%

Или можно использовать формулу:

,

где r1-значение выбранной ставки дисконтирования, при которой NPVi>0; r2 — значение выбранной ставки дисконтирования, при которой NPV2<0.

АНАЛИЗ РЕЗУЛЬТАТОВ

1) Если кто-то инвестирует в нас

R < IRR

Если ставка дисконтирования ниже внутренней нормы рентабельности IRR, то вложенный в проект капитал принесет положительное значение NPV, следовательно, проект можно принять.

R = IRR

Если ставка дисконтирования равна внутренней нормы рентабельности IRR, то проект не принесет ни прибыль и не убытки, следовательно, проект нужно отклонить.

R > IRR

Если ставка дисконтирования выше внутренней нормы рентабельности IRR, то вложенный капитал в проект принесет отрицательное значение NPV, следовательно, проект нужно отклонить.

Таким образом, если проект полностью финансируется за счет ссуды коммерческого банка (банк инвестирует в нас), то значение IRRпоказывает верхнюю границу допустимого уровня банковской процентной ставки, превышение которого делает проект убыточным.

Например: если рассчитанная для нашего проекта IRR = 12%, то ссуду мы будем брать только в том банке, у которого ставка = 9, 10 или 11%.

2) Если инвестируем мы (вкладываем в собственный бизнес, в банк или кредитуем другую организацию)

Стоит принять тот проект, у которого IRR выше, т.е. IRR -> max.

По сути, теперь мы встали на место банка. Чем выше IRR в каком-либо проекте, тем большую ставку дисконтирования (R) мы можем использовать и тем больший доход от вложения наших средств получим.