В процентах к предыдущему году как считать

Большинство аналитиков, работающих в корпорациях, чтобы получить операционные показатели фирмы, должны использовать в Excel разного рода математические операции. Вычисления такие как процентные части от суммы, относительное отклонение от бюджета или возможные наценки возникающие на основе выполнения всех бизнес-анализов. Все это нужно посчитать в процентах.

Как посчитать процент от числа в Excel

Когда руководство Вас просит вычислить процентную часть текущей реализации поставленной цели, оно имеет ввиду относительное сравнение текущих показателей, с запланированными показателями, которые нужно достичь. Математические действия для вычисления данной формулы в Excel очень просты. Необходимо поделить текущие показатели разделить на запланированные и отобразить значение результата в процентном формате ячеек. Таким образом мы получим процентное значение отображающее долю реализации части плана. Допустим в плане продаж фирмы запланировано продать в этом месяце 100 планшетов, но месяц еще не закончился и на текущий момент продано пока только 80 штук. В процентах это математически вычисляется так (80/100)*100. Если же мы используем процентный формат ячеек в Excel, тогда не нужно умножать на 100. В таком случае формула выглядит так: =80/100.



Как посчитать процент выполнения плана в Excel

Не важно, как поставлена задача: процентная часть реализации цели, выполнение бюджета или плана продаж в процентах – это все касается одной и той же задачи. Вычисляется одним и тем же способом. Ниже на рисунке отображен список регионов. Напротив, каждого региона рядом в столбце указана желаемая цель и фактическая реализация плана. Обратите внимание, что в последнем столбце где указан результат выполнения плана в процентах изменен формат ячеек на «процентный». А формулы в этом столбце весьма простые – значение столбца «Продано» делиться на значение в столбце «План» =C2/B2.

Мало что можно сказать о данной формуле. Ведь в ее основе используется математическое вычисление. В самой формуле же применяться только лишь ссылки на ячейки, так чтобы одно значение было разделено на другое. Без каких-либо функций. Достаточно лишь вписать формулу в первую пустую ячейку последнего столбца (D2), а далее скопировать ее заполнив остальные ячейки.

Как вычислить процент выполнения от общего плана

Теперь усложним задачу. Допустим нам нужно отдельно сравнить каждый фактический показатель по отношению к общему поставленному плану для всех регионов. Поставленная задача, наглядно проиллюстрированная ниже на рисунке:

На этот раз регионы не имеют столбца со своим собственным планом. Вместо этого сразу идет столбец «Доля», где каждый показатель продаж сравнивается с общим планом, указанным в ячейке E2. Формула в столбце «Доля» на этот раз выглядит следующим образом =B2/$E$2.

Обратите внимание на то, что в знаменателе формулы используется абсолютная ссылка на ячейку $E$2. Символы доллара указывают нам на то, что ссылка на ячейку с значением общего плана заблокирована. Благодаря этому она не изменяется при копировании формулы в другие ячейки столбца «Доля». В ячейке C6 мы суммируем все проценты чтобы убедиться в точности результата. Как видим снова и на втором рисунке мы получили такое же перевыполнение общего плана – 105%. Итоговые значения в процентах у нас совпали, значит все вычисления формул верны.

Формула расчёта CAGR

CAGR или совокупный годовой темп роста — это средняя скорость, с которой инвестиции растут с течением времени, предполагая, что их реинвестировали ежегодно (периодически), т.е. с учетом сложного процента. CAGR не имеет ничего общего со стоимостью инвестиций в промежуточные годы, так как она зависит только от стоимости в первый год и последний год инвестиционного владения.

CAGR = (EV / BV) 1/n — 1

, где:

  • BV — Начальное значение, BV (beginning value)
  • EV — Конечное значение, EV (ending value)
  • n — Число периодов

Пример

Если ваши инвестиции выросли с 100.000 рублей до 250.000 рублей за последние пять лет, то совокупный годовой темп роста ваших инвестиций составил 20,11% в год. Калькулятор CAGR также можно использовать для определения темпа роста, который вам понадобится в будущем для достижения инвестиционных целей, поставленных сегодня. Например, если у вас сегодня есть 1000 долларов, и через пять лет вы хотите, чтобы ваши инвестиции составляли 2500 долларов, вам нужно будет найти такие способы инвестирования, которые, как ожидается, могут приносить по 20,11% в год.

Где применяется калькулятор CAGR

Среднегодовой темп роста применяется в различных участках личных финансов. Он часто используется для расчета среднего роста отдельных инвестиций за определенный период. CAGR может применяться при сравнении доходности капитала с облигациями или депозитами. Кроме того, его можно использовать для сравнения результатов деятельности двух компаний и прогнозирования их будущего роста на основе их исторических данных.

Ограничение CAGR

CAGR не учитывает волатильность. Он рассчитывает только средний процент возврата, поэтому значения CAGR никогда не должны рассматриваться как единственный инструмент для оценки возврата инвестиций.

Почему CAGR так важен

Хотя среднегодовая доходность является общепринятой для взаимных фондов, CAGR является всё же лучшим показателем доходности инвестиций с течением времени.

Усреднение результатов за 1-й и 2-й год за два года дает нам среднюю доходность 4% , но это не совсем точно отражает то, что произошло на самом деле. Мы начали с 1000 рублей и закончили тоже на 1000 рублей, а значит наша доходность равна 0%.

Т.е. ещё раз. В данном примере, среднегодовая доходность: 4%, а CAGR равен 0%, что конечно правильнее.

Темп роста (Тр) — это показатель интенсивности изменения уровня ряда, который выражается в процентах, а в долях выражается коэффициент роста (Кр). Кр определяется как отношение последующего уровня к предыдущему или к показателю принятому за базу сравнения. Он определяет, во сколько раз увеличился уровень по сравнению с базисным, а в случае уменьшения — какую часть базисного уровня составляет сравниваемый.

Рассчитываем коэффициент роста, умножаем на 100 и получаем темп роста

Коэффициент роста может быть рассчитан по формулам:

Также темп роста может определяться так:

Темп роста всегда положителен. Между цепным и базисным темпами роста существует определенная взаимосвязь: произведение цепных коэффициентов роста равно базисному коэффициенту роста за весь период, а частное от деления последующего базисного темпа роста на предыдущий равно цепному темпу роста.

Абсолютный прирост

Абсолютный прирост характеризует увеличение (уменьшение) уровня ряда за определенный промежуток времени. Он определяется по формуле:

1. Абсолютный прирост (цепной):

2. Абсолютный прирост (базисный):

где уi — уровень сравниваемого периода;

Уi-1 — Уровень предшествующего периода;

У0 — уровень базисного периода.

Цепные и базисные абсолютные приросты связаны между собой таким образом: сумма последовательных цепных абсолютных приростов равна базисному, т. е. общему приросту за весь промежуток времени:

Абсолютный прирост может быть положительным или отрицательным знак. Он показывает, на сколько уровень текущего периода выше (ниже) базисного, и таким образом измеряет абсолютную скорость роста или снижение уровня.

Темп прироста (Тпр) показывает относительную величину прироста и показывает, на сколько процентов сравниваемый уровень больше или меньше уровня, принятого за базу сравнения. Он может быть как положительным, так и отрицательным или равным нулю, он выражается в процентах и долях (коэффициенты прироста); рассчитывается как отношение абсолютного прироста к абсолютному уровню, принятому за базу:

Темп прироста можно получить из темпа роста:

Коэффициент прироста может быть получен таким образом:

Абсолютное значение 1%-го прироста

Абсолютное значение 1% прироста (А%) — это отношение абсолютного прироста к темпу прироста, выраженный в процентах и показывает значимость каждого процента прироста за тот же период времени:

Абсолютное значение одного процента прироста равно сотой части предыдущего или базисного уровня. Оно показывает, какое абсолютное значение скрывается за относительным показателем — одним процентом прироста.

Примеры расчетов показателей динамики

Перед изучением теории по теме показатели динамики Вы можете посмотреть примеры задач по нахождению: темпа роста, темпа прироста, абсолютного прироста, средних величин динамики

Пример 1. Расчет среднемесячного темп роста объема продаж

Пример 2. Определение всех показателей динамики (подробный расчет)

Пример 3. Расчет цепных, базисных и средних показателей динамики

О показателях динамики

При исследовании динамики общественных явлений возникает трудность описания интенсивности изменения и расчета средних показателей динамики в контрольных по статистике, которые задают студентам.

Анализ интенсивности изменения во времени происходит с помощью показателей, которые получаются вследствие сравнения уровней. К этим показателям относят: темп роста, абсолютный прирост, абсолютное значение одного процента прироста. Для обобщающей характеристики динамики исследуемых явлений определяется средний показатели: средние уровни ряда и средние показатели изменения уровней ряда. Показатели анализа динамики могут определяться по постоянной и переменным базам сравнения. Здесь принято называть сравнимый уровень отчетным, а уровень, с которого производится сравнение, — базисным.

Для расчета показателей динамики на постоянной базе, нужно каждый уровень ряда сравнить с одним и тем же базисным уровнем. В качестве базисного используют только начальный уровень в ряду динамики или уровень, с которого начинается новый этап развития явления. Показатели, которые при этом рассчитываются, называются базисными. Для расчета показателей анализа динамики на переменной базе нужно каждый последующий уровень ряда сравнить с предыдущим. Вычисленные показатели анализа динамики будут называться цепными.

Источник: Балинова B.C. Статистика в вопросах и ответах: Учеб. пособие. — М.: ТК. Велби, Изд-во Проспект, 2004. — 344 с.

В разных областях общественной жизни, целом ряде наук и методов исследования используются формулы показателей темпа роста и темпа прироста. Наиболее часто они применяются в экономике и статистике для выявления тенденций и результатов проведенных мероприятий. В этой статье рассматриваются ситуации, когда нужны эти формулы, их определения и порядок вычисления.

Представленные формулы очень похожи и могут вызывать затруднение и путаницу. Для этого поясним следующее:

  • темп роста показывает, сколько процентов составляет одно число от другого;
  • темп прироста показывает, на сколько процентов увеличилось или уменьшилось одно число относительно другого;
  • темп роста не может быть отрицательным, темп прироста – может;
  • темп прироста можно вычислить на базе темпа роста, обратного порядка не допускается.

В экономической практике чаще используется показатель прироста, поскольку он более наглядно отражает динамику изменений.

Если вам когда-нибудь приходилось иметь дело с анализами рядов динамики, то наверняка вы наслышаны о таких статистических показателях, как темп роста и темп прироста. Но если темп роста понятие достаточно простое, то темп прироста часто вызывается множество вопросов, касающихся в том числе и формулы его расчета. Эта статья будет полезна как для тех, для кого эти понятия не новы, но слегка забыты, так и для тех, кто слышит данные термины впервые. Далее мы растолкуем для вас понятия темпа роста и прироста и расскажем вам о том, как найти тем прироста.

Темп роста и темп прироста: в чем разница?

Темп роста – это показатель, который необходим для того, чтобы определить, сколько занимает одно значение ряда в другом. В качестве последнего, как правило, используют предыдущую величину, или же базисную, то есть ту, которая находится в начале исследуемого ряда. Если результат вычислений темпа роста оказывается больше ста процентов, то это говорит о том, что имеет место увеличение показателя, который исследуется. И наоборот, если в результате получаем меньше ста процентов, это значит, что исследуемый показатель уменьшается. Рассчитывать темп прироста достаточно просто: нужно найти отношение значения за период отчета к значению базисного или предыдущего временного отрезка.

В отличие от темпа роста, темп прироста позволяет вычислить на сколько изменилась величина, которую мы исследуем. При расчетах полученное положительное значение может свидетельствовать о наличии темпа прироста, в то же время, отрицательное значение говорит о том, что имеет место темп снижения значения относительно предыдущего или базисного периода.

Каким же образом рассчитывают темп прироста? Для этого расчета необходимо сперва найти отношение показателя к предыдущему, а после вычесть из полученного результата единицу и умножить получившуюся сумму на сто. Умножив число на сто вы сможете получить итог в процентах.

Такой способ расчета используется чаще остальных, но случается и такое, что известно только значение абсолютного прироста, а фактическое значение показателя, который мы анализируем, нам не известно. Можно ли рассчитать темп прироста в таком случае? Можно, но в этом стандартная формула нам уже не поможет, необходимо применить альтернативную формулу. Суть ее состоит в том, чтобы найти процентное отношение абсолютного прироста к определенному уровню, в сравнении с которым он рассчитывался.

Важно, что абсолютный прирост может быть как положительным, так и отрицательным. Узнав эту информацию можно определить, увеличивается или уменьшается выбранный показатель за определенный период.

Как вычислить темп прироста

Поскольку темп прироста – величина относительная, он вычисляется в долях или в процентах, и выступает в роли коэффициента прироста. Если перед нами стоит вопрос, как определить темп прироста, нам нужно разделить абсолютный прирост за выбранный период на показатель за начальный период и умножить итоговую величину на сто, чтобы получить цифру в процентном отношении.

Для наглядности рассмотри пример. Допустим, у нас есть следующие условия:

  • Выручка за отчетный период составляет Z рублей;
  • Выручка за предыдущий период составляет R рублей.

Мы уже можем вычислить, что абсолютный прирост будет равен Z-R при таких условиях. Далее мы рассчитываем темп прироста за весь выбранный период. Для этого необходимо определить исходный уровень (допустим, это будет год образования предприятия). В таком случае абсолютный прирост вычисляется как разница между показателями последнего и первого года. Тогда темп прироста за весь период мы вычисляем путем разделения этой разницы на показатель первого года.

Расчет темпа прироста на калькуляторе

Конечно, формула темпа прироста вовсе не сложная, но даже с такими расчетами иногда могут возникнуть трудности. Во время новейших технологий, конечно же, можно найти способы, которые облегчат нам жизнь и помогут с расчетами даже такой сложности. Сейчас в Интернете можно найти специальные калькуляторы, предназначенные для расчета аналитических показателей статистических рядов динамики. Теперь знание сложных формул совсем не обязательно для того, чтобы узнать темп роста или прироста, достаточно ввести имеющиеся данные в соответствующие поля калькулятора и он сам произведет все подсчеты.

После того, как мы расставили все точки над і и выяснили, с помощью каких формул можно узнать темп роста и прироста, важно отметить, что для того, чтобы дать единственно верную оценку исследуемому явлению не достаточно иметь информацию лишь об одном показателе. К примеру, может возникнуть случай, когда на предприятии величина абсолютного прироста прибыли постепенно увеличивается, но при этом развитие замедляется. Это говорит о том, что любые признаки динамики нуждаются в комплексном анализе.

Многие интересуются тем, как рассчитать темп роста за определенный период. При подробном рассмотрении этот вопрос может вызвать много проблем, потому что можно рассчитывать темп роста с учетом базисных, цепных и средних показателей с разными нюансами. Мы же рассмотрим этот вопрос в более простом контексте.

Расчет темпа роста: формула

В обобщенном виде схема расчета темпа роста выглядит так: темп роста = данные на конец периода / данные на начало периода. Для более наглядного результата ответ умножают на 100 %, таким образом будет выражен темп роста в процентах.

Рассмотрим применение схемы темпа роста на конкретном примере. Допустим, нам нужно посчитать темп роста за несколько лет. У нас есть показатель на 2005 год — 240 и есть показатель на 2013 год — 480. Для того чтобы рассчитать темп роста за эти годы в процентах, мы 480/240 * 100%. Результат: 200 %. Темп роста составил 200 %, это значит, что рассматриваемый нами показатель с 2005 по 2013 год вырос в два раза.

Часто темп роста путают с темпом прироста, так как их формулы похожи, однако эти показатели все же разные. Для того чтобы найти темп прироста, нужно вычесть из показателя в расчетном периоде показатель в базисном, затем поделить результат на показатель в базисном и умножить на 100. В итоге получится темп прироста в процентах. Рассмотрим на примере выше. Допустим, что 240 — это показатель за базисный период, а 480 — показатель за отчетный период. Итак, (480-240)/240 * 100% = 100%. Темп прироста составил 100 %.

Как видите, темп роста и темп прироста — это разные показатели. Темп роста показывает, как растет показатель, во сколько раз он изменяется за рассматриваемый период, а темп прироста показывает, на сколько увеличивается рассматриваемый показатель за определенный период. Каждый из них рассчитывается по-своему, поэтому не стоит их путать.

Найдем темп роста показателей, темп прироста показателей. На основе базовых показателей рассчитаем показатели интенсификации производственных ресурсов, содержащихся в формуле (1).

Темп роста найдем путем отношения данных второго года на первый год и умноженный на 100%. Темп прироста находим вычитанием из полученной цифры 100%.

1. Темп роста проданной продукции равен:

(3502: 2604) х 100% = 134, 5%,

Темп прироста равен:

134,5% — 100% = 34,5%;

2. Темп роста персонала равен:

(100: 99) х 100% = 101,0%,

Темп прироста равен:

101,0% — 100% = 1,0%;

3. Темп роста оплаты труда равен:

(1555: 1365) х 100% = 113,9%,

Темп прироста равен:

113,9% — 100% = 13,9%;

4. Темп роста материальных затрат равен:

(1016: 905) х 100% = 112,3%,

Темп прироста равен:

112,3% — 100% = 12,3%;

5. Темп роста амортизации равен:

(178: 90) х 100% = 197,8%,

Темп прироста равен:

197,8% — 100% = 97,8%;

6. Темп роста внеоборотных активов равен:

(1612: 1237) х 100% = 130,3%,

Темп прироста равен:

130,3% — 100% = 30,3%;

7. Темп роста оборотных активов равен:

(943: 800) х 100% = 117,9%,

Темп прироста равен:

117,9% — 100% = 17,9%;

Результаты расчетов занесем в таблицу 7.

Для базового года:

1. Оплатоемость продукции: 1365: 2604 = 0,524194;

2. Материалоемкость продукции: 905: 2604 = 0,524194;

3. Амортизациеемкость продукции: 90: 2604 = 0,034562;

4. Фондоемкость продукции: 1237: 2604 = 0,524194;

800: 2604 = 0,307220.

Для отчетного года:

1. Оплатоемкость продукции: 1555: 3502 = 0,444032;

2. Материалоемкость продукции: 1016: 3502 = 0,290120;

3. Амортизациеемкость продукции: 178: 3502 = 0,050828;

4. Фондоемкость продукции: 1612: 3502 = 0,460308;

5. Коэффициент закрепления оборотных активов:

943: 3502 = 0,269275.

Результаты внесем в таблицу 8.

Таблица 8.

Показатели интенсификации использования

производственных ресурсов

Методику анализа пятифакторной модели рентабельности активов рассчитаем методом цепных подстановок и рассмотрим влияние на рентабельность пяти вышеназванных факторов.

Сначала найдем значение рентабельности для базового и отчетного годов:

для базового года

Крентв(0) = 1-(0,524194+0,347542+0,034562) = 1-0,906298 = 0,1198, т.е. 11,98%

0,475038+0,307220 0,782258

для отчетного года

Крентв(1) = 1-(0,444032+0,290120+0,050828) = 1-0,78498 = 0,2947, т.е. 29,47%

0,460308+0,269275 0,729583

Разность в коэффициентах рентабельности отчетного и базового годов составила 0,1749, или в процентах – 17,49%.

Теперь рассмотрим, какое влияние на это повышение рентабельности оказали пять вышеназванных факторов.

1. Влияние фактора трудоемкости

Крентв|U = 1-(0,444032+0,347542+0,034562) = 1-0826136 = 0,2223, т.е. 22,23%

0,475038+0,307220 0,782258

0,2223 — 0,1198 = 0,1025, т.е. 10,25%

2. Влияние фактора материалоемкости.

Крентв|M = 1-(0,444032+0,290120+0,034562) = 1-0,768714 = 0,2957, т.е. 29,57%

0,475038+0,307220 0,782258

0,2957 – 0,2223 = 0,0734, т.е. 7,34%

3. Влияние фактора амортизациеемкости.

Крентв|A = 1-(0,444032+0,290120+0,050828) = 1-0,78498 = 0,2749, т.е. 27,49%

0,475038+0,307220 0,782258

0,2749 – 0,2957 = -0,0208, т.е. -2,08%

4. Влияние фактора фондоемкости.

Крентв|F = 1-(0,444032+0,290120+0,050828) = 1-0,78498 = 0,2801, т.е. 28,01%

0,460308+0,307220 0,767528

0,2801 – 0,2749 = 0,0052, т.е. 0,52%

5. Влияние фактора оборачиваемости оборотных средств.

Для того чтоб рассчитать влияние фактора оборачиваемости оборотных средств, вместо базовой оборачиваемости подставим отчетную цифру. Получим отчетную рентабельность. Сравнение отчетной рентабельности с предыдущей условной рентабельностью покажет влияние оборачиваемости:

0,2947 – 0,2801 = 0,0146, т.е. 1,46%.

В заключение составим сводку влияния факторов на отклонение рентабельности 2-го года по сравнению с 1-м годом:

3.2. Комплексная оценка эффективности хозяйственной деятельности

на основе экстенсивности и интенсивности

Рассмотрим расчеты предлагаемой методики комплексной оценки на примере данных ООО «Финжилсервис» за 2 года: 1-й год – базовый, 2-й год – отчетный. Исходные данные представлены в таблице 7 «Базовые показатели по предприятию за два года».

Результаты анализа внесем в таблицу 9.

Таблица 9.

Сводный анализ показателей интенсификации и эффективности

Виды ресурсов

Динамика качественных показа-телей, коэф-фициент

Прирост ресурса на 1% при-роста про-дукции, %

Доля влияния на 100% прироста продукции

Относи-тельная экономия ресурсов, тыс. руб.

Экстенсивности, %

Интенсив-ности, %

1.а) Персонал

б) Оплата труда с на-числениями

2.Материальные зат-раты

3.Амортизация

4.Основные средства (внеоборотные акти-вы)

5.Оборотные активы

6.Комплексная оценка всесторонней интен-сификации

Как темп роста в процентах и соответствующий ему темп прироста. При этом с первым обычно все понятно, а вот второй нередко вызывает разные вопросы, касающиеся как трактовки полученного значения, так и самой формулы расчета. Пришла пора разобраться, чем отличаются между собой эти величины и как их нужно правильно определять.

Темп роста

Данный показатель исчисляют для того, чтобы выяснять, сколько процентов составляет одно значение ряда от другого. В роли последнего чаще всего используется предыдущая величина либо базисная, то есть та, что стоит в начале исследуемого ряда. Если результат окажется больше 100%, это означает, что наблюдается увеличение исследуемого показателя, и наоборот. Рассчитать очень просто: достаточно найти отношение значения за к значению предыдущего или базисного отрезка времени.

Темп прироста

В отличие от предыдущего этот показатель позволяет выяснить не во сколько, а на сколько изменилась исследуемая величина. Положительное значение результатов расчетов означает, что наблюдается а отрицательное — темп снижения изучаемого значения в сравнении с предыдущим или базисным периодом. Как рассчитать темп прироста? Вначале находят отношение исследуемого показателя к базисному или предыдущему, а затем из полученного результата вычитают единицу, после чего, как правило, умножают итог на 100, чтобы получить его в процентах. Этот способ используется чаще всего, однако бывает так, что вместо фактического значения анализируемого показателя известно лишь значение абсолютного прироста. Как рассчитать темп прироста в этом случае? Здесь уже нужно использовать альтернативную формулу. Второй вариант расчёта состоит в нахождении процентного отношения к тому уровню, по сравнению с которым он и был рассчитан.

Практика

Предположим, нам стало известно, что в 2010 году акционерное общество «Светлый Путь» получило прибыль в 120 000 руб., в 2011 году — 110 400 руб., а в 2012 величина дохода увеличилась по сравнению с 2011 годом на 25 000 руб. Давайте посмотрим, как рассчитать темп прироста и темп роста на основе имеющихся данных, и какой из этого можно сделать вывод.

Темп роста = 110 400 / 120 000 = 0,92 или 92%.

Вывод: В 2011 прибыль предприятия по сравнению с предыдущим годом составила 92%.

Темп прироста = 110 400 / 120 000 — 1 = -0,08, или -8%.

Это означает, что в 2011 году доходы АО «Светлый Путь» по сравнению с 2010 снизились на 8%.

2. Расчёт показателей за 2012 год.

Темп роста = (120 000 + 25 000) / 120 000 ≈ 1,2083 или 120,83%.

Это означает, что прибыль нашей компании в 2012 г. по сравнению с предыдущим, 2011 годом, составила 120,83%.

Темп прироста = 25 000 / 120 000 — 1 ≈ 0,2083 или 20,83%.

Вывод: финансовые результаты анализируемого предприятия в 2012 году оказались больше соответствующего показателя 2011 г. на 20,83%.

Заключение

После того как мы разобрались, как рассчитать темп прироста и темп роста, отметим, что на основе всего лишь одного показателя невозможно дать однозначно правильную оценку исследуемому явлению. Например, вполне может оказаться, что величина абсолютного прироста прибыли увеличивается, а развитие предприятия замедляется. Поэтому любые признаки динамики необходимо анализировать совместно, то есть комплексно.